CONCERNING THE NUMBER OF CONDENSATION CENTERS

V. F. Stepanchuk

Inzhenerno-Fizicheskii Zhurnal, Vol. 15, No. 1, pp. 52—59, 1968

UDC 536.423.4

It is shown that for rapid adiabatic expansion processes a considerable
contribution to the rate of formation of condensation centers is made
by the mobility of the boundary between stable drops and droplets of

subcritical size formed as a result of heterophase fluctuations.

Modern ideas concerning the condensation mecha-
nism [1-3] associated with the adiabatic expansion of
a superheated and saturated vapor can be expressed
in the following very condensed form.

In the superheated and saturated vapor there are
heterophase fluctuations that lead to the formation of
droplets of liguid phase. The number of these droplets*
diminishes very quickly as their diameter (the number
of molecules in the droplet) increases. This number
can be determined from the formula

N(g)=Cexp(~M>. (1)
kT

For the superheated and saturated vapor the quan-
tity N(g) is a monotonically decreasing function depend-
ing on g, since in this case ¢ g > ¢ and hence A¢ >0,

In the case of a supercooled vapor the quantity N{g)
has a distinctly expressed minimum, since for the
supercooled vapor ¢ g < ¢ and hence A¢ < 0.

It is easy to show that this minimum is observed
when
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When g > g, the number of droplets begins to increase.

Thus, in the region of superheated vapor and at
g < ger the distribution N(g) is purely dynamic; the
drops are unstable. At g >g., the drops are stable;
they do not disintegrate but become condensation cen-
ters. As condensation proceeds, the number of mole-
cules in the drop increases and, consequently, so
does its stability.

We note that the quantity N(g) is a stationary dis-
tribution, i.e., the distribution that exists in a sys-
tem in the equilibrium state. In this sense N{g) is a
category characteristic only of a superheated and sat-
urated vapor. A supercooled vapor, by its very na-
ture, cannot be in the equilibrium state, i.e., in a
supercooled vapor a stationary distribution N(g) can-
not be achieved; in the supercooled vapor a process
occurs in which a certain number of droplets pass

through the critical size and form condensation cen-
ters. This process continues until the supercooled
vapor goes over into the state of dry saturated vapor
and liquid droplets.

The rate of formation of condensation centers can
be obtained on the assumption that the liquid droplets
formed are eliminated from the system and replaced
by the same number of individual molecules. As a
consequence, a certain stationary droplet distribution
(different from the N(g) distribution) and a certain
droplet flux through the critical diameter develop in
the supercooled vapor.

The number of condensation centers (the droplet
flux through the critical diameter per unit time, the
rate of formation of condensation centers) is then de-
termined from the formula
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Here, rgp is the critical radius:
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In the process of adiabatic expansion in Laval noz-
zles the flow is supercooled [4], and the amount of
condensed moisture is determined from the formula
proposed by Oswatisch [5]:
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Here, m(]',7) is the mass of a drop formed in section
I' after it reaches a section [; to a considerable ex-
tent it is determined by the rate of growth of the drop;
1(7') is the rate of formation of condensation centers
in section I'; F(I') is the cross-sectional area; and [
the coordinate of the section in which the flow inter-
sects the upper boundary curve.

Examples of the numerical solution of the problem
of vapor flow in nozzles based on the above ideas can
be found in [6,7]. In most cases the agreement be-
tween theory and experiment is satisfactory. Nonethe-
less, in our view, the above method of determining
the number of condensation centers disregards certain
important factors. This applies particularly to rapid
processes of adiabatic expansion.

*For brevity, the term "droplet" is used for parti-
cles of subcritical diameter.

609



In these processes, apart from the condensation
centers that result from the addition of molecules and
the consequent increase in the diameter of the drops to
the critical value and above, new condensation centers
appear as a result of the fact that the critical size de-
creases in the process of adiabatic expansion. In other
words, the total number of condensation centers is
composed both of droplets that have crossed the criti-
cal diameter in the process of hetorophase fluctuation
and droplets of the preexisting distribution, owing to
the decrease in the critical diameter during adiabatic
expansion. For example, in the case of a process of
infinitely rapid adiabatic expansion the number of con-
densation centers due to droplet growth will be equal
to zero, whereas the number of condensation centers
due to the sharp decrease in critical diameter will be
very considerable. This explains why supercooling in
excess of 60—70° K cannot be achieved even in the case
of very rapid expansion. Clearly, if the expansion is
very rapid, droplets already existing in the initial sta-
tionary distribution N(g) occupy the zone g >gcp, and
it is precisely these droplets that become condensation
centers. Thus, owing to the mobility of the boundary
between the stable and unstable drops new condensation
centers appear, the total number of which can be de-
fined as

n= Ff(g)dg»

gCl‘

This quantity differs from N(g) in that N(g) is a sta-
tionary distribution, whereas f(g) corresponds to a non-
equilibrium distribution.

In expansion processes that proceed at a finite rate
it is possible to determine the flux of condensation
centers (rate of formation of new condensation centers)
due to the mobility of the boundary between stable and
unstable drops as follows:

g dAT dp dl
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Keeping in mind that dI/d7 = u is the flow velocity, we
can rewrite the latter relation in the form

dg o (ﬂ_ﬁjd_”_ (5)
dAT \dp dp) dl’

I" =uf (g)

We evaluate one by one all the derivatives entering
into this expression.

1. In determining dgey/dAT two variants are possi-
ble.

a) When the supercooling is relatively small. In
this case it is possible to use the familiar formula [1]}
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From this expression we easily find that
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But
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Using (6), we obtain

dg 8norl, T,

32m0° 02T
dAT — A ATE = ’

TTARATE (69

Using Avogadro's number (N = 6.0228. 10%) we
can reduce formula (6') to a form convenient for prac-
tical calculations:

dg.. 32m-10"5¢> Ny T° )

s

ATE

dAT p
Here, it has been assumed that vgNy /it = 0.001 m?*/kg
(working medium—steam); T = ANy /u is the latent heat
of vaporization.
b) When the supercooling is relatively large. In
this case it is possible to use the most general formu-
la [1)

200,
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T,—AT

From the latter expression we easily find that
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As before, we can write

dg o __4’”%" dr,
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or, using (8), obtain
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Finally, as for (7), we can write
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2. Along the phase transition line the derivative
dT ¢/dp is determined by the Clapeyron-Clausius equa-
tion
ar, _(a—v)T _ @ —o)T (9)
dp A r '

For the region of small pressures, where the vol-
ume of the liquid phase is small as compared with the
volume of the vapor phase and as the equation of state
of the saturated vapor we can use the equation of state
of a perfect gas pv = RT, we obtain

dr,  RT* ) (97)

dp rp



3. The derivative dT/dp for expansion with total
supercooling is determined by the equation of the adia-
batic curve, according to which

K
= const.

K—1

The latter relation and Eq. (9) make it possible to
obtain for the low-pressure region

AT T, 4T _ el T, s RT)
dp dp dp K p k—1 r }°©

In this expression the minus sign reflects the known
fact that as the pressure decreases (flow accelerates)
the supercooling increases.

4, Finally, the derivative dp/dl can be found from
the well-known equation of gasdynamics (8) for a one-
dimensional flow, when only the geometric factor is
involved:

F
e 4
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Using the fact that, in accordance with the momen-
tum equation
dp = —pudu,
we can rewrite Eq. (10) in the form

N L
d - (—MyF d’
Thus, for the region of comparatively low pressure,

using the expressions obtained for the derivatives, we
can write
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If the supercooling is considerable, the correspond-
ing formula will be

, K—1 x RT uf ()
I =32 R [1— RT
” ( k1 1 ) Fl—m)
3 -4
< [V Na 100 (10 —Ts ) L dF (19
7 T.—AT | T—AT di

There are two possible methods of evaluating the
quantity I':

1. In the first variant we calculate the distribution
of all the parameters along the nozzle and then deter-
mine I' from (11) or (12) depending on the supercool-
ing.

2. In this variant the preparatory work is the same
as before, the calculations including the construction
of the supercooling distribution along the nozzle. The
subsequent calculation of I' is based on the obvious
equation

dg, dAT _

=
o
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The derivative dAT/AI can be evaluated graphically.
In the case of considerable supercooling we have
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1t should be noted that I and I', and hence their roles
in the general process of formation of condensation
centers, are essentially different. In the case of rapid
expansion processes the role of I' is decisive. Con-
versely, inthe case of slow expansionprocesses greater
importance attaches to the increase in the number of
condensation centers due to the fact that as a result of
heterophase fluctuations a certain number of droplets
"overstep” the critical diameter.

The number of droplets passing in unit time from
class g to the class of particles with number of mole-
cules g + 1 is determined from the differential equation

[1]

I=—s@pN@ Z (13)

dg
where 8 is a coefficient representing the number of
vapor molecules condensing per unit time per unit area.
This coefficient does not depend on g and can be taken
equal to the number of gas molecules per unit time per
unit area, i.e., in the first approximation

B = p

YV onmkT

The quantity Z = f(g) /N{(g) entering into (13) repre-
sents the relation between the number of droplets of a
given size actually existing in the vapor and the num-
ber of droplets in the equilibrium state. The quantity
N{g) is given by Eq. (1).

Thus, the relation between the number of conden-
sation centers of different origin is given by the ob-
vious equation
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After a series of transformations we can reduce
this relation to the form

11' - p‘ATTSdAT ai m%. e
9(2n RT) "u— 22 %
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In obtaining the starting relation we used the fact
that the droplet fluxes are calculated in the region of
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the critical point, where

;

s(g) =4nr2 =16m-10°° (
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An equation analogous to relation (14) above can be
obtained for the case of considerable supercooling. In
this case it should be taken into account that

T, )—2
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Thus, the problem reduces to the determination of
the quantity Z. However, this is a question of indepen-
dent interest.

The quantity Z can be estimated on the basis of the
following considerations. In the case of relatively rap-
id adiabatic expansion the distribution N(g, 0) is pre-
served for a comparatively long time. Thus, in this
case as the first approximation we can assume that in
the process of expansion the initial distribution, deter-
mined by the initial parameters, is retained, i.e.,

7 1@ N0 . [_(Acpi +A¢f)g]_
N N KT
Consequently,
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og Z kT,

For example, for the expansion of a saturated vapor
we obtain
9 1 rAT

—n— =Ag; = .22
gz T wrr

when the supercooling is small and
a 1 7 T

_,11‘1__: R 8
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when it is considerable.

Thus, in the case of adiabatic expansion from a
state of saturation the relations between the two types
of condensation centers are determined from the equa-
tion

I pr
- 1o [Ty \o ,rom dAT (15)
2@m) 7 (AT)Ru RT =4

when the supercooling is small, and

pr_(ln J )
I .\ T,—AT (16)

I -~ dAT
2(2n) ° % Ru v RT T

when the supercooling is arbitrarily large.
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From these equations it is easy to see that 1/T' > 1
for ordinary values of the supercooling gradient
(dAT A1 usually fluctuates from 1000° K/m to 100° K/m).
This means that in the nozzles of steam turbines an
important role is played by the condensation centers
that appear as a result of the mobility of the boundary
between stable and unstable droplets.

NOTATION

N{g) is the distribution characteristic of the equi-
librium state of the vapor, i,e., the relation between
the number of droplets and the number of molecules in
a droplet in the equilibrium state of the vapor; f(g) is
the distribution characteristic of the nonequilibrium
state of the system, i.e.,, the relation between the
number of droplets and the number of molecules in a
droplet in the nonequilibrium state of the vapor; g is
the number of molecules in the droplet; C is a con-
stant approximately equal to the number of molecules
in the system; A¢ = ¢p — @p s the difference of the
chemical potentials of the liquid and vapor phases; b =
= cr(41r)1/3(3vB)2/3 is a coefficient reflecting the action
of the surface tension forces; ¢ is the surface tension;
k is Boltzmann's constant; v and VB denote the spe-
cific volume per molecule in the vapor and liquid phases,
respectively; m is the molecular mass; y is the molec-
ular weight; A is the latent heat of vaporization for a
single molecule; T is the latent heat of vaporization;
Tg is the saturation temperature for the plane phase
interface; T is the temperature; p is the pressure;
AT = (Tg — T) is the supercooling; 7 is the time; u is
the flow velocity; k is the adiabatic exponent; p is the
density; s(g) is the surface of the drop; r is the radius
of the drop.
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